Fast Fourier Transform (FFT) (Theory and Implementation)

Learning Objectives

DFT algorithm. Conversion of DFT to FFT algorithm. Implementation of the FFT algorithm.

DF'T Algorithm

The Fourier transform of an analogue signal $x(t)$ is given by:

$$
X(\omega)=\int_{-\infty}^{+\infty} x(t) e^{-j e t} d t
$$

The Discrete Fourier Transform (DFT) of a discrete-time signal $\mathrm{x}(\mathrm{nT})$ is given by:

$$
X(k)=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} n k}
$$

- Where:

$$
\begin{gathered}
k=0,1, \ldots N-1 \\
x(n T)=x[n]
\end{gathered}
$$

DF' Algorithm

If we let:

$$
e^{-\frac{2 \pi}{N}}=W_{N}
$$

then:

$$
X(k)=\sum_{n=0}^{N-1} x[n] W_{N}^{n k}
$$

DF' Algorithm

$\mathrm{x}[\mathrm{n}]=$ input
$\mathrm{X}[\mathrm{k}]=$ frequency bins
W = twiddle factors

$$
\begin{aligned}
& \mathrm{X}(0) \quad=\mathrm{x}[0] \mathrm{W}_{\mathrm{N}}{ }^{0}+\mathrm{x}[1] \mathrm{W}_{\mathrm{N}}{ }^{0 * 1}+\ldots+\mathrm{x}[\mathrm{~N}-1] \mathrm{W}_{\mathrm{N}}{ }^{0 *}(\mathrm{~N}-1) \\
& X(1) \quad=x[0] W_{N}{ }^{0}+x[1] W_{N}{ }^{1 * 1}+\ldots+x[N-1] W_{N}{ }^{1 *}(N-1) \\
& \text { : } \\
& X(k) \quad=x[0] W_{N}{ }^{0}+x[1] W_{N}{ }^{k^{*} 1}+\ldots+x[N-1] W_{N}{ }^{k^{*}(N-1)} \\
& \mathrm{X}(\mathrm{~N}-1)=\mathrm{x}[0] \mathrm{W}_{\mathrm{N}}{ }^{0}+\mathrm{x}[1] \mathrm{W}_{\mathrm{N}}{ }^{(\mathrm{N}-1)^{*} 1}+\ldots+\mathrm{x}[\mathrm{~N}-1] \mathrm{W}_{\mathrm{N}}(\mathrm{~N}-1)(\mathrm{N}-1)
\end{aligned}
$$

Note: For \mathbf{N} samples of x we have \mathbf{N} frequencies representing the signal.

Performance of the DFT Algorithm

The DFT requires $\mathbf{N}^{2}(\mathbf{N x N})$ complex multiplications:

- Each X(k) requires N complex multiplications.
- Therefore to evaluate all the values of the DFT ($\mathrm{X}(0)$ to $\mathrm{X}(\mathrm{N}-1)$) N^{2} multiplications are required.
The DF'T also requires ($\mathbf{N}-1$) ${ }^{*} \mathbf{N}$ complex additions:
- Each X(k) requires N-1 additions.
- Therefore to evaluate all the values of the DFT ($\mathbf{N}-1$) $* \mathbf{N}$ additions are required.

Performance of the DF' Algorithm

Can the number of computations required be reduced?

A large amount of work has been devoted to reducing the computation time of a DFT.

This has led to efficient algorithms which are known as the Fast Fourier Transform (FFT) algorithms.

DFT \rightarrow ERT

$$
\begin{aligned}
& x(k)=\sum_{n=0}^{N-1} x[n] W_{N}^{w k} ; 0 \leq k \leq N-1 \\
& \mathbf{x}[\mathbf{n}]=\mathbf{x}[\mathbf{0}], \mathbf{x}[1], \ldots, \mathbf{x}[\mathbf{N}-1]
\end{aligned}
$$

Lets divide the sequence $\mathrm{x}[\mathrm{n}]$ into even and odd sequences:

- $\mathrm{x}[2 \mathrm{n}]=\mathrm{x}[0], \mathrm{x}[2], \ldots, \mathrm{x}[\mathrm{N}-2]$
$\cdot x[2 n+1]=x[1], x[3], \ldots, x[N-1]$

DFT \rightarrow ERT

Equation 1 can be rewritten as:

[2]

- Since:

$$
\begin{aligned}
W_{N}^{2 n k} & =e^{-j \frac{2 \pi}{N} \frac{2}{2} n k}=e^{-j \frac{2 \pi}{N / 2} n k} \\
& =W_{\frac{N}{2}}^{n k}
\end{aligned}
$$

$$
W_{N}^{(2 n+1) k}=W_{N}^{k} \cdot W_{\frac{N}{2}}^{n k}
$$

Then:

$$
\begin{aligned}
X(k) & =\sum_{n=0}^{\frac{N}{2}-1} x[2 n] W_{\frac{N}{2}}^{n k}+W_{N}^{k} \sum_{n=0}^{\frac{N}{2}-1} x[2 n+1] W_{\frac{N}{2}}^{n k} \\
& =Y(k)+W_{N}^{k} Z(k)
\end{aligned}
$$

DFT \rightarrow ERT

The result is that an N -point DFT can be divided into two N/2 point DFT's:

$$
\left.X(k)=\sum_{n=0}^{N-1}[n]\right]_{N}^{n k} ; 0 \leq k \leq N-1 \quad \text { N-point DFT }
$$

- Where $\mathbf{Y}(\mathbf{k})$ and $\mathbf{Z}(\mathbf{k})$ are the two $\mathrm{N} / 2$ point DFTs operating on even and odd samples respectively:

$$
\begin{aligned}
X(k) & =\sum_{n=0}^{\frac{N}{2}-1} x_{1}[n] W_{\frac{N}{2}}^{n k}+W_{N}^{k} \sum_{n=0}^{\frac{N}{2}-1} x_{2}[n] W_{\frac{N}{2}}^{n k} \\
& =Y(k)+W_{N}^{k} Z(k)
\end{aligned}
$$

Two N/2point DFTs

DFT \rightarrow FHT

- Periodicity and symmetry of W can be exploited to simplify the DFT further:

$$
\begin{gathered}
X(k)=\sum_{n=0}^{\frac{N}{2}-1} x_{1}[n] W_{\frac{N}{2}}^{n k}+W_{N}^{k} \sum_{n=0}^{\frac{N}{2}-1} x_{2}[n] W_{\frac{N}{2}}^{n k} \\
\vdots \\
X\left(k+\frac{N}{2}\right)=\sum_{n=0}^{\frac{N}{2}-1} x_{1}[n] W_{\frac{N}{2}}^{n\left(k+\frac{N}{2}\right)}+W_{N}{ }^{k+\frac{N}{2}} \sum_{n=0}^{\frac{N}{2}-1} x_{2}[n] W_{\frac{N}{2}}^{n\left(k+\frac{N}{2}\right)}
\end{gathered}
$$

Or: $W_{N}^{k+\frac{N}{2}}=e^{-j \frac{2 \pi}{N} k} e^{-j \frac{2 \pi}{N} \frac{N}{2}}=e^{-j \frac{2 \pi}{N} k} e^{-j \pi}=-e^{-j \frac{2 \pi}{N} k}=-W_{N}^{k}$: Symmetry

And: $W_{\frac{N}{2}}^{k+\frac{N}{2}}=e^{-j \frac{2 \pi}{N / 2} k} e^{-j \frac{2 \pi}{N / 2} \frac{N}{2}}=e^{-j \frac{2 \pi}{N / 2} k}=W_{\frac{N}{2}}^{k}$
: Periodicity

DFT \rightarrow FRT

Symmetry and periodicity:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{N}}{ }^{\mathrm{k}+\mathrm{N} / 2} & =-\mathrm{W}_{\mathrm{N}}{ }^{\mathrm{W}} \\
\mathrm{~N} / 2^{\mathrm{k}+\mathrm{N} / 2} & =\mathrm{W}_{\mathrm{N} / 2}{ }^{\mathrm{k}} \\
\mathbf{W}_{8}{ }^{\mathrm{k}+4} & =-\mathrm{W}_{8}{ }^{\mathrm{k}} \\
\mathrm{~W}_{8}{ }^{\mathrm{k}+8} & =\mathrm{W}_{8}{ }^{k}
\end{aligned}
$$

DET \rightarrow FET

Finally by exploiting the symmetry and periodicity, Equation 3 can be written as:

$$
\begin{gathered}
X\left(k+\frac{N}{2}\right)=\sum_{n=0}^{\frac{N}{2}-1} x_{n}[n] \frac{]_{\frac{N}{2}}^{n k}}{n}-W_{N}^{k} \sum_{n=0}^{\frac{N}{2}-1} x_{2}[n] W_{\frac{1}{2}}^{2 k} \\
=Y(k)-W_{N}^{k} Z(k)
\end{gathered}
$$

DET \rightarrow FHT

$$
\left.\begin{array}{rl}
X(k) & =Y(k)+W_{N}^{k} Z(k) ;
\end{array} \quad k=0, \ldots\left(\frac{N}{2}-1\right)\right)
$$

- $\mathrm{Y}(\mathrm{k})$ and $\mathrm{W}_{\mathrm{N}}{ }^{\mathrm{k}} \mathrm{Z}(\mathrm{k})$ only need to be calculated once and used for both equations.
Note: the calculation is reduced from 0 to N -1 to 0 to ($\mathrm{N} / 2-1$).

DFT \rightarrow ERT

$$
\left.\begin{array}{rl}
X(k) & =Y(k)+W_{N}^{k} Z(k) ;
\end{array} \quad k=0, \ldots\left(\frac{N}{2}-1\right)\right)
$$

- Y(k) and Z(k) can also be divided into N/4 point DF'Is using the same process shown above:

$$
\begin{array}{rlrl}
Y(k) & =U(k)+W_{\frac{N}{2}}^{k} V(k) & Z(k) & =P(k)+W_{\frac{N}{2}}^{k} Q(k) \\
Y\left(k+\frac{N}{4}\right) & =U(k)-W_{\frac{N}{2}}^{k} V(k) & Z\left(k+\frac{N}{4}\right)=P(k)-W_{\frac{N}{2}}^{k} Q(k)
\end{array}
$$

The process continues until we reach 2 point DFTs.

DFT \rightarrow ENT

Illustration of the first decimation in time FRT.

FNT Implementation

Calculation of the output of a 'butterfly':

$$
\begin{aligned}
& \mathbf{Y}(\mathrm{k})=\quad \mathrm{U}_{\mathrm{r}}+\mathrm{jU}_{\mathrm{i}} \longrightarrow \mathrm{U}^{\prime}=\mathrm{U}_{\mathrm{r}}{ }^{\prime}+\mathrm{jU}_{\mathrm{i}}{ }^{\prime}=\mathbf{X}(\mathrm{k}) \\
& W_{N}{ }^{k} Z(k)=\left(L_{r}+j L_{i}\right)\left(W_{r}+j W_{i}\right) \xrightarrow[-1]{\longrightarrow} L^{\prime}=L_{r}{ }^{\prime}+j L_{i}{ }^{\prime}=X(k+N / 2) \\
& \text { Key: } \quad \mathrm{U}=\text { Upper } \quad \mathrm{r}=\text { real } \\
& \mathrm{L}=\text { Lower } \quad \mathrm{i}=\text { imaginary }
\end{aligned}
$$

Different methods are available for calculating the outputs U^{\prime} and L'.
The best method is the one with the least number of multiplications and additions.

FFT Implementation

Calculation of the output of a 'butterfly':

$$
\begin{aligned}
& \left(L_{r}+j L_{i}\right)\left(W_{r}+j W_{i}\right)=L_{r} W_{r}+j L_{r} W_{i}+j L_{i} W_{r}-L_{i} W_{i}
\end{aligned}
$$

$$
\begin{aligned}
U^{\prime} & =\left[\left(L_{r} W_{r}-L_{i} W_{i}\right)+j\left(L_{r} W_{i}+L_{i} W_{r}\right)\right]+\left[U_{r}+j U_{i}\right] \\
& =\left(L_{r} W_{r}-L_{i} W_{i}+U_{r}\right)+j\left(L_{r} W_{i}+L_{i} W_{r}+U_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
L^{\prime} & =\left(U_{r}+j U_{i}\right)-\left[\left(L_{r} W_{r}-L_{i} W_{i}\right)+j\left(L_{r} W_{i}+L_{i} W_{r}\right)\right] \\
& =\left(U_{r}-L_{r} W_{r}+L_{i} W_{i}\right)+j\left(U_{i}-L_{r} W_{i}-L_{i} W_{r}\right)
\end{aligned}
$$

FINT Implementation

Calculation of the output of a 'butterfly':

$\mathrm{U}_{\mathrm{r}}+\mathrm{jU}_{\mathrm{i}} \longrightarrow \mathrm{U}^{\prime}=\mathrm{U}_{\mathrm{r}}{ }^{\prime}+\mathrm{j} \mathrm{U}_{\mathrm{i}}{ }^{\prime}=\left(\mathrm{L}_{\mathrm{r}} \mathbf{W}_{\mathrm{r}}-\mathrm{L}_{\mathrm{i}} \mathbf{W}_{\mathrm{i}}+\mathrm{U}_{\mathrm{r}}\right)+\mathrm{j}\left(\mathrm{L}_{\mathrm{r}} \mathbf{W}_{\mathrm{i}}+\mathrm{L}_{\mathrm{i}} \mathbf{W}_{\mathrm{r}}+\mathrm{U}_{\mathrm{i}}\right)$
$\left(\mathrm{L}_{\mathrm{r}}+\mathbf{j} \mathrm{L}_{\mathrm{i}}\right)\left(\mathbf{W}_{\mathrm{r}}+\mathbf{j} \mathbf{W}_{\mathrm{i}}\right)$

To further minimise the number of operations ($*$ and +), the following are calculated only once:

$$
\begin{array}{r}
\hline \text { temp1 }=\mathrm{L}_{\mathrm{r}} \mathrm{~W}_{\mathrm{r}} \quad \text { temp2 }=\mathrm{L}_{\mathrm{i}} \mathrm{~W}_{\mathrm{i}} \quad \text { temp3 }=\mathrm{L}_{\mathrm{r}} \mathrm{~W}_{\mathrm{i}} \quad \text { temp4 }=\mathrm{L}_{\mathrm{i}} \mathrm{~W}_{\mathrm{r}} \\
\text { temp1_2 }=\text { temp1 }- \text { temp2 } \\
\text { temp3_4 }=\text { temp3 }+ \text { temp4 }
\end{array}
$$

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{r}}^{\prime}=\text { temp1 - temp2 }+\mathrm{U}_{\mathrm{r}}=\text { temp1_2+ } \mathrm{U}_{\mathrm{r}} \\
& \mathrm{U}_{\mathrm{i}}^{\prime}=\text { temp3 }+ \text { temp4 }+\mathrm{U}_{\mathrm{i}}=\text { temp3_4+ } \mathrm{U}_{\mathrm{i}} \\
& \mathrm{~L}_{\mathrm{r}}{ }^{\prime}=\mathrm{U}_{\mathrm{r}}-\text { temp1 }+ \text { temp2 }=\mathrm{U}_{\mathrm{r}}-\text { temp1_2 } \\
& \mathrm{L}_{\mathrm{i}}{ }^{\prime}=\mathrm{U}_{\mathrm{i}}-\text { temp3 }- \text { temp4 }=\mathrm{U}_{\mathrm{i}}-\text { temp3_4 }
\end{aligned}
$$

FFT' Implementation (Butterfily Calculation)

Converting the butterfly calculation into ${ }^{\text {' }}$ ' ' code:

```
temp1 = (y[lower].real * WR);
temp2 = (y[lower].imag * WI);
temp3 = (y[lower].real * WI);
temp4 = (y[lower].imag * WR);
temp1_2 = temp1 - temp2;
temp3_4 = temp 3 + temp4;
y[upper].real = temp1_2 + y[upper].real;
y[upper].imag = temp3_4 + y[upper].imag;
y[lower].imag = y[upper].imag - temp3_4;
y[lower].real = y[upper].real - temp1_2;
```


FNT Implementation

To efficiently implement the FFT algorithm a few observations are made:

- Each stage has the same number of butterfilies (number of butterfices $=\mathbf{N} / 2, \mathbf{N}$ is number of points).
- The number of DFT groups per stage is equal to ($\mathrm{N} / 2^{\text {stage }}$).
- The difference between the upper and lower leg is equal to $2^{\text {stage-1 }}$.
- The number of butterflies in the group is equal to $2^{\text {stage-1 }}$.

FNT Implementation

Example: 8 point FFT

- Decimation in time FFT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FNT Implementation

Example: 8 point FFT
(1) Number of stages:

- Decimation in time FFT:
- Number of stages $=\log _{2} \mathrm{~N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

FINT Implementation

Stage 1

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=1$

Decimation in time FFT:

- Number of stages $=\log _{2} \mathrm{~N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

Stage 1

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=2$

Decimation in time FFT:

- Number of stages $=\log _{2} \mathrm{~N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

Stage 1

Stage 2

Stage 3

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=3$

Decimation in time FFT:

- Number of stages $=\log _{2} \mathrm{~N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FINT Implementation

Stage 1

Stage 2

Stage 3

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=3$
(2) Blocks/stage:
- Stage 1:
- Decimation in time FFT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterfilies/block = $2^{\text {stage-1 }}$

FINT Implementation

Stage 1

Stage 2

Stage 3

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=3$
(2) Blocks/stage:
- Stage 1: $\mathrm{N}_{\text {blocks }}=1$
- Decimation in time FFT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FINT Implementation

Stage 1

Stage 2

Stage 3

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=3$
(2) Blocks/stage:
- Stage 1: $\mathrm{N}_{\text {blocks }}=2$
- Decimation in time FFT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FINT Implementation

Stage 1

Stage 2

Stage 3

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
(2) Blocks/stage:
- Stage 1: $\mathrm{N}_{\text {blocks }}=3$
- Decimation in time FFT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FINT Implementation

Stage 1

Stage 2

Stage 3

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
(2) Blocks/stage:
- Stage 1: $\mathrm{N}_{\text {blocks }}=4$
- Decimation in time FFT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterfilies/block = $2^{\text {stage-1 }}$

FIN' Implementation

Stage 1

Stage 2

Stage 3

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
(2) Blocks/stage:
- Stage 1: $\mathrm{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=1$
- Decimation in time FFT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FINT Implementation

Stage 1

Stage 2

Stage 3

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
(2) Blocks/stage:
- Stage 1: $\mathrm{N}_{\text {blocks }}=4$
- Stage 2: $\mathrm{N}_{\text {blocks }}=2$
- Decimation in time FFT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FIFT Implementation

Stage 1

Stage 2

Stage 3

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=3$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Stage 3: $\mathrm{N}_{\text {blocks }}=1$
- Decimation in time FFT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FIFT Implementation

Stage 1

Stage 2

Stage 3

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=3$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Stage 3: $\mathbf{N}_{\text {blocks }}=1$
(3) B'flies/block:
- Stage 1:
- Decimation in time FFT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {talage-1 }}$

FIFT Implementation

Stage 1

Stage 2

Stage 3

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=3$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Stage 3: $\mathbf{N}_{\text {blocks }}=1$
(3) B'flies/block:
- Stage 1: $\mathbf{N}_{\mathrm{btf}}=1$

Decimation in time FFT:

- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {talage-1 }}$

FIFT Implementation

Stage 1

Stage 2

Stage 3

Decimation in time FIFT:

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=3$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Stage 3: $\mathbf{N}_{\text {blocks }}=1$
(3) B'flies/block:
- Stage 1: $\mathbf{N}_{\mathrm{btf}}=1$
- Stage 2: $\mathbf{N}_{\mathrm{btf}}=1$
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FIT' Implementation

Stage 1

Stage 2

Stage 3

Decimation in time FIFT:

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=3$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Stage 3: $\mathbf{N}_{\text {blocks }}=1$
(3) B'flies/block:
- Stage 1: $\mathbf{N}_{\mathrm{btf}}=1$
- Stage 2: $\mathbf{N}_{\mathrm{btf}}=2$
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FIFT Implementation

Stage 1

Stage 2

Stage 3

Decimation in time FFT:

- Number of stages $=\log _{2} \mathbf{N}$

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=3$
(2) Blocks/stage:
- Stage 1: $\mathrm{N}_{\text {blocks }}=4$
- Stage 2: $\mathrm{N}_{\text {blocks }}=2$
- Stage 3: $\mathrm{N}_{\text {blocks }}=1$
(3) B’flies/block:
- Stage 1: $\mathrm{N}_{\mathrm{bff}}=1$
- Stage 2: $\mathrm{N}_{\mathrm{bff}}=2$
- Stage 3: $\mathrm{N}_{\mathrm{bff}}=1$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage- }}$

FIFT Implementation

Stage 1

Stage 2

Stage 3

Decimation in time FFT:

- Number of stages $=\log _{2} \mathbf{N}$

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=3$
(2) Blocks/stage:
- Stage 1: $\mathrm{N}_{\text {blocks }}=4$
- Stage 2: $\mathrm{N}_{\text {blocks }}=2$
- Stage 3: $\mathrm{N}_{\text {blocks }}=1$
(3) $\mathrm{B}^{\text {'flies/block: }}$
- Stage 1: $\mathrm{N}_{\mathrm{bff}}=1$
- Stage 2: $\mathrm{N}_{\mathrm{bff}}=2$
- Stage 3: $\mathrm{N}_{\mathrm{bff}}=2$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FHT Implementation

Stage 1

Stage 2

Stage 3

Decimation in time FIFT:

- Number of stages $=\log _{2} \mathbf{N}$

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=3$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Stage 3: $\mathbf{N}_{\text {blocks }}=1$
(3) B'flies/block:
- Stage 1: $\mathbf{N}_{\mathrm{btf}}=1$
- Stage 2: $\mathbf{N}_{\mathrm{btf}}=2$
- Stage $3: \mathbf{N}_{\mathrm{btf}}=3$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FHT Implementation

Stage 1

Stage 2

Stage 3

Decimation in time FIFT:

- Number of stages $=\log _{2} \mathbf{N}$

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=3$
(2) Blocks/stage:
- Stage 1: $\mathrm{N}_{\text {blocks }}=4$
- Stage 2: $\mathrm{N}_{\text {blocks }}=2$
- Stage 3: $\mathrm{N}_{\text {blocks }}=1$
(3) $\mathrm{B}^{\text {'flies/block: }}$
- Stage 1: $\mathrm{N}_{\mathrm{bff}}=1$
- Stage 2: $\mathrm{N}_{\mathrm{bff}}=2$
- Stage 3: $\mathrm{N}_{\mathrm{bff}}=4$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FIFT Implementation

Stage 1

Start Index
Input Index
Twiddle Factor Index
$\mathrm{N} / 2=4$

Stage 2

0

0
4
Stage 3

FIFT Implementation

Stage 1

Start Index
Input Index
Twiddle Factor Index
$\mathrm{N} / 2=4$

Stage 2

0
2

Stage 3

0
4
$4 / 2=2$

FIFT Implementation

Start Index
Input Index
Twiddle Factor Index

Stage 1

Stage 2

0
2
$\mathrm{N} / 2=4$

Stage 3

0
4
$2 / 2=1$

FIFT Implementation

Start Index
Input Index
Twiddle Factor Index
Indicies Used

Stage 1

Stage 2

0
1
$\mathrm{N} / 2=4$
W_{0}

Stage 3

0
4

$$
\begin{array}{cc}
4 / 2=2 & 2 / 2=1 \\
\mathrm{~W}_{0} & \mathrm{~W}_{0} \\
\mathrm{~W}_{2} & \mathrm{~W}_{1} \\
& \mathrm{~W}_{2}
\end{array}
$$

W_{3}

FINT Implementation

The most important aspect of converting the FFT diagram to ${ }^{\circ} \mathrm{C}^{\prime}$ code is to calculate the upper and lower indices of each butterfly:

```
GS = N/4; /* Group step initial value */
step = 1;
/* Initial value */
/* NB is a constant */
for (k=N; k>1; k>>1) /* Repeat this loop for each stage */
{
    for (j=0; j<N; j+=GS) /* Repeat this loop for each block */
    {
        for (n=j; n<(j+GS-1); n+=step) /* Repeat this loop for each butterfly */
        {
            upperindex = n;
            lowerindex = n+step;
        }
    }
    /* Change the GS and step for the next stage */
    GS = GS << 1;
    step = step << 1;
}
```


FINT Implementation

How to declare and access twiddle factors:
 (1) How to declare the twiddle factors:

```
struct {
    short real; // 32767 * cos (2*pi*n) -> Q15 format
    short imag; // 32767 * sin (2*pi*n) -> Q15 format
} w[] = { 32767,0,
        32767,-201,
            };
```


(2) How to access the twiddle factors:

```
short temp_real, temp_imag;
temp_real = w[i].real;
temp_imag = w[i].imag;
```

